Combating Fusarium Infection Using Bacillus-Based Antimicrobials
نویسندگان
چکیده
Despite efforts to control toxigenic Fusarium species, wilt and head-blight infections are destructive and economically damaging diseases that have global effects. The utilization of biological control agents in disease management programs has provided an effective, safe, and sustainable means to control Fusarium-induced plant diseases. Among the most widely used microbes for biocontrol agents are members of the genus Bacillus. These species influence plant and fungal pathogen interactions by a number of mechanisms such as competing for essential nutrients, antagonizing pathogens by producing fungitoxic metabolites, or inducing systemic resistance in plants. The multivariate interactions among plant-biocontrol agent-pathogen are the subject of this study, in which we survey the advances made regarding the research on the Bacillus-Fusarium interaction and focus on the principles and mechanisms of action among plant-growth promoting Bacillus species. In particular, we highlight their use in limiting and controlling Fusarium spread and infestations of economically important crops. This knowledge will be useful to define strategies for exploiting this group of beneficial bacteria for use as inoculants by themselves or in combination with other microbes for enhanced crop protection.
منابع مشابه
Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn.
Fusarium verticillioides is a fungus of significant economic importance because of its deleterious effects on plant and animal health and on the quality of their products. Corn (Zea mays) is the primary host for F. verticillioides, and we have investigated the impact of the plant's antimicrobial compounds (DIMBOA, DIBOA, MBOA, and BOA) on fungal virulence and systemic colonization. F. verticill...
متن کاملReduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance.
ABSTRACT Field experiments were conducted in 1994, 1995, and 1996 to evaluate the incidence and severity of Fusarium ear rot and the incidence of symp-tomless Fusarium infection in kernels of maize hybrids genetically engineered with Bacillus thuringiensis genes encoding for the delta-endotoxin CryIA(b). Treatments included manual infestation with European corn borer (ECB) larvae and insecticid...
متن کاملPerformance of Natural Antagonists and Commercial Microbiocides towards in Vitro Suppression of Flower Bed Soil-Borne Fusarium oxysporum
Fusarium oxysporum is the causal agent for wilt diseases of many major ornamental and horticultural crops. In this study, we plated a local cut flower grower’s soil, with a persistent history of Fusarium wilt of scented stock, Matthiola incana but not the lettuce rotational crop. This yielded culture plates with characteristic pink to carmine red fungi, together with a mixed bacterial populatio...
متن کاملDetoxification of corn antimicrobial compounds as the basis for isolating Fusarium verticillioides and some other Fusarium species from corn.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to M...
متن کاملRhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis
Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strain...
متن کامل